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The influence of Marangoni stresses, caused by contaminants adsorbed on the surface
of small air bubbles, rising in water, is examined by numerical simulations. A modified
level set method is used to represent the deformable bubble interface, extended by a
model for the contaminant transport on the bubble surface. We show that surface
tension variations of less than 2 % are sufficient to generate Marangoni stresses
that are strong enough to change the rising characteristics of a bubble to that of a
corresponding solid particle. In such situations, we find that the bubble surface is
fully covered with contaminant and the shear stress profile resembles the shear stress
profile around a solid sphere.

1. Introduction
Dispersed gas bubbles play an important role in many industrial applications.

Distillation, extraction and heterogeneous catalysis are only a few among a multitude
of applications. The bubble size distribution, the breakup and coalescence behaviour
and the velocity relative to the surrounding liquid determine the interfacial area and
the residence time, the two most important parameters for heat and mass transfer.
Therefore, understanding the bubble behaviour appears crucial for process design.
Hence, knowing the fundamental behaviour of single bubbles is mandatory for the
examination of bubble swarms or for the Euler–Lagrange or Euler–Euler modelling
of disperse systems. The examination of single bubbles can be done with many
different perspectives. There are small bubbles with an almost spherical shape that
have straight rising trajectories; there are big bubbles that rise on a helical path,
while at the same time changing their shape periodically. Bubbles can be examined
in quiescent liquid or under shear flow conditions, and the surrounding liquid can be
pure or it can be contaminated. Due to this huge variety of aspects and in spite of
many years of research, the behaviour of single gas bubbles in liquids is still not fully
understood.

It is long known that small gas bubbles rising in a quiescent liquid often do not reach
the rising velocity, predicted for bubbles with a perfect mobile interface. Instead, they
may behave like solid particles, featuring an immobile interface (cf. Clift, Grace &
Weber 1978). This is particularly true for bubbles in aqueous liquids. A common
explanation for this phenomenon is the presence of trace amounts of surface-active
substances in the liquid. These contaminants are adsorbed on the gas–liquid interface
and are convected to the downstream cap of the bubble, where they accumulate. This
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Figure 1. Problem sketch for a spherical bubble.
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Figure 2. Problem sketch for an ellipsoidal bubble.

leads to a non-constant contaminant concentration along the interface, which in turn
causes a non-constant surface tension. Surface tension gradients now result in shear
stresses, usually directed to the upstream cap of the bubble. If we neglect, for sake of
simple arguments, small shear stresses from the gas, the conditions on the gas–liquid
interface, thus, change from zero shear stress to a finite shear stress (cf. Frumkin &
Levich 1947). This effect is usually termed solutal Marangoni effect. Throughout this
article, we use the word contaminant for substances that have an effect on surface
tension. Even though in literature the word surfactant is sometimes used as synonym,
in our understanding surfactants are substances, specifically designed to strongly
lower surface tension.

In a first attempt to model this Marangoni effect the so-called stagnant cap model
has been developed (cf. Savic 1953). Firstly, it divides the bubble surface into an
upstream cap, which is supposed to be free from adsorbed contaminant and, hence,
is characterized by vanishing shear stress. Secondly, a downstream cap is introduced,
where the Maragoni stresses are high enough so that the relative velocity on the
bubble surface vanishes and the no-slip condition holds. In the model, the size of
this stagnant cap is controlled by the stagnant cap angle θsc, which is the angle at
the boundary between the mobile and the immobile region of the bubble. The bubble
fixed coordinate system may be found in figures 1 and 2. The limiting cases are
θsc → π for the shear-free bubble and θsc → 0 for the solid bubble.
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Even though the stagnant cap model is a one-parameter model, the full physical
problem appears to be influenced by as many as seven parameters (cf. Cuenot,
Magnaudet & Spennato 1997). Several studies in literature have attempted to verify
the stagnant cap model, applying different degrees of simplification to the full
physical problem. Often authors decouple the transport of the contaminant on the
interface from that in the bulk. Furthermore, commonly the contaminant transport
on the interface is simplified by neglecting one of the contributions: convection,
diffusion, adsorption or desorption. The following publications are examples from this
group. Sadhal & Johnson (1983), for the creeping flow regime, derive an analytical
solution for the bubble drag as function of the stagnant cap angle. Palaparthi,
Papageorgiou & Maldarelli (2006) numerically examine the influence of the bulk
concentration, including bulk diffusivity as well as adsorption/desorption kinetics.
Harper (1974) theoretically examines the formation of stagnant caps in surfactant
solutions, including the diffusion boundary layer. Cuenot et al. (1997) include all
contaminant transport contributions, and even couple the interface transport to the
bulk transport. In their numerical study, however, they neglect bubble deformation.
Hence, they obtain results on the influence of contaminations on a spherical bubble.
A similar study, including bubble deformation, is made by McLaughlin (1996). Wang,
Papageorgiou & Maldarelli (1999) address the influence of high bulk concentration
on spherical bubbles. They engage the creeping flow limit and, therefore, also have to
find a solution for the concentration field within the bulk. In a study on surfactant
influence on the skin friction of bubbles, Li (2006) assumes an insoluble contaminant.
Hence, he neglects adsorption and desorption, and the mass of surfactant on the
interface remains constant.

The numerical methods applied to gas–liquid interfaces can be divided into two
categories. Most of the above-mentioned studies use a fixed or slightly deformable
computational grid, with the gas–liquid interface on one of the boundaries of the
computational domain (e.g. McLaughlin 1996; Cuenot et al. 1997; Li 2006; Palaparthi
et al. 2006). The contaminant transport is then computed on the two-dimensional
mesh at the boundary, representing the bubble surface. This approach, though straight
forward to encode, puts certain limitations on the deformation of the bubble. A
different approach are immersed boundary methods (cf. Peskin 2002) or diffuse
interface methods (cf. Anderson & McFadden 1998). These methods are capable of
handling large deformations or even breakup of bubbles. The most notable derivatives
of these approaches are the volume-of-fluid (VOF) or the level set method. Examples
of applications are Renardy, Renardy & Cristini (2002), James & Lowengrub (2004),
Drumright-Clark & Renardy (2004) or Xu et al. (2006).

In this work we apply numerical simulations to compute the distribution of a
contaminant on the surface of a deformable gas bubble. Hence, we model the
full contaminant transport on the gas–liquid interface, including adsorption and
desorption processes, all in the frame of an immersed boundary formulation in
conjunction with a modified level set method. The initially clean and stationary
bubble is exposed to the contaminated liquid, which in turn, via contaminant
adsorption/desorption, leads to reduced surface tension on the bubble surface.
The temporal evolution of both the rising velocity and the surface contaminant
concentration are computed. All these results are examined for varied physical and
chemical parameters.

The article is organized as follows: following this introduction, the physical
modelling and the applied assumptions and simplifications are explained in § 2,
followed by some theoretical considerations on the contaminant properties. A detailed
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description of the numerical method is given in § 3. Results are presented and
compared to available correlations and previous results in § 4.

2. Physical model
In this section we describe the physical model of a single gas bubble of density ρg

and viscosity μg, rising in an infinite quiescent liquid of density ρl and viscosity μl .
The surface tension of the clean gas–liquid interface is σ0, the characteristic diameter
of the bubble is that of a volume-equivalent sphere and is denoted by d0. The terminal
rising velocity of the bubble is u∞. Figures 1 and 2 show sketches of the problem
for both a spherical and an ellipsoidal bubble; the sketches include the bubble-fixed
coordinate system (r, θ) as well as the corresponding Cartesian coordinates (x, y).

2.1. Governing equations

Both the gas and the liquid are considered incompressible. The respective flow
fields are governed by the Navier–Stokes and the continuity equations. Using the
immersed–boundary formulation as introduced by Peskin (2002), both flow fields can
be described with a single set of equations, namely by

ρ(φ)

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ(φ)∇2u + ρ(φ)g − δ(φ)(∇σ + nκσ ), (2.1a)

∇ · u = 0. (2.1b)

Here, u is the velocity vector field for both fluids, n is the interface normal vector,
pointing into the gas, and κ is the mean curvature of the interface. Density and
viscosity depend on the colour function φ; following the continuum surface force
model as introduced by Brackbill, Kothe & Zemach (1992), the surface tension force
is limited to the interface by a Dirac delta function δ(φ), which is non-zero on the
interface and vanishes everywhere else. The colour function and its computation will
be described in detail in § 3.

If the liquid phase is contaminated, the constant bulk phase concentration being
cbulk , the contaminant can interact with the interface as discussed above. Typically,
molecules are adsorbed on the upstream cap of the bubble. They are convected along
the interface while at the same time being subject to molecular diffusion. On the
downstream cap of the bubble, the contaminant accumulates and desorbs from the
interface. Following Stone (1990), the concentration c on the interface is governed by

∂c

∂t
+ u · ∇sc = Ds∇2

s c + kAcbulk (1 − X) − kDX, (2.2)

where Ds is the interface diffusion coefficient, kA and kD are the adsorption and
desorption coefficients, X = c/c∞ is the interface coverage, which is the ratio of the
actual concentration to the concentration at maximum monolayer packaging. ∇s is
the interface differential operator and can be calculated from ∇s = (I − n ⊗ n)∇ (cf.
Xu et al. 2006), where I is the unit tensor. The velocity field in (2.2) is the global
velocity field. For the purpose of interpretation it may be split into a tangential and
normal component. The tangential component then represents the purely convective
transport along the interface, whereas the normal component represents the change
in concentration due to stretching of the interface.

Depending on the size and structure of the contaminant molecules, they have a
specific influence on surface tension. Most commonly, Langmuir’s equation of state is



Marangoni effects on bubble surfaces 147

used to express the dependency of the local surface tension on the local contaminant
concentration (cf. Xu et al. 2006). Hence, we have

σ (c) = σ0 + RT c∞ log(1 − X). (2.3)

As mentioned before, σ0 is the surface tension of the clean interface (i.e. at c = 0), R

is the ideal gas constant and T is the temperature. It can be concluded from (2.3) that
for a given system at given temperature, the only variable governing the dependency
of the surface tension is the concentration at maximum packaging c∞.

2.2. Non-dimensionalization

The non-dimensionalization of the above equations is based on the properties of
the gas, i.e. we use the scales ρ ′ = ρ/ρg and μ′ = μ/μg. Further, the coordinates are
scaled by x ′ = x/d0, using the bubble equivalent diameter; concentration by c′ = c/c∞,
using the maximum concentration; and surface tension by σ ′ = σ/σ0, using the surface
tension of the clean interface. Since the terminal velocity of a rising bubble is not
known a priori, we define the scale u′ = u/u0, with u0 =

√
gd0, instead. Finally, pressure

is scaled by p′ = p/ρgu
2
0, using an inertial pressure scale, and time by t ′ = t/(d0/u0).

The resulting dimensionless Navier–Stokes and continuity equations are

ρ ′(φ)

(
∂u′

∂t ′ + u′ · ∇u′
)

= −∇p′ +
μ′(φ)

Re
	u′ − ρ ′(φ)ey − δ(φ)

We
(∇σ ′ + nσ ′), (2.4a)

∇ · u′ = 0. (2.4b)

The dimensionless groups within (2.4a) are both a Reynolds and a Weber number,
defined by Re = u0d0ρg/μg and We = u2

0d0ρg/σ0.
The transport equation for the contaminant in dimensionless form is

∂c′

∂t ′ + u′ · ∇sc
′ =

1

Pe
∇2

s c
′ + k′

A(1 − c′) − k′
Dc′ (2.5)

with the Péclet number Pe = u0d0/Ds and the dimensionless adsorption and desorption
coefficients k′

A = kAcbulkd0/(c∞u0) and k′
D = kDd0/(c∞u0).

The equation of state for the surface tension reads

σ ′(c′) = 1 + E log(1 − c′), (2.6)

with E = RT c∞/σ0. E is a measure for the strength of a contaminant and is often
called surface elasticity.

2.3. Characterization of contaminations

The contamination of gas–liquid interfaces appears to be a broad subject. It
ranges from contaminants that have almost no effect on surface tension, even at
high concentration, to contaminants that have a strong effect, even at a very low
concentration. For any given contaminant, five unknowns are encountered, namely
the surface diffusion coefficient Ds , the adsorption coefficient kA, the desorption
coefficient kD , the bulk phase concentration cbulk and the concentration of the
fully covered interface c∞. Since it is hardly possible to examine the influence
of all these parameters, we shall limit our field of parameters by the following
considerations.

The rising velocity of gas bubbles with a size of ∼10−3 m is ∼10−1 m s−1. Typical
diffusion coefficients are ∼10−10 m2 s−1 or even smaller. This gives a Péclet number
of Pe ∼ 106, which clearly implies that diffusive transport can be neglected against
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convection. Given such strong convection in the bulk, the bubble is always in contact
with fresh liquid of concentration cbulk . Therefore, it appears reasonable to assume
that the bulk phase concentration cbulk is constant, even close to the interface. As the
estimate of the Péclet number is valid likewise for the transport on the interface, we
can also neglect the diffusion on the interface.

The adsorption/desorption process can be represented as an equilibrium reaction
between contaminant molecules in the bulk phase Sbulk , free adsorption places Xads

and adsorbed contaminant molecules Sads . Hence, we have

Sbulk + Xads � Sads . (2.7)

The kinetic parameters are the adsorption and desorption coefficients k′
A and k′

D .
Three cases can be discerned:

(a) The bulk phase is almost pure and cbulk 
 0, or the contaminant is highly
soluble in the liquid and kA is small. In this case, we have k′

A � k′
D . The equilibrium

is shifted to the left-hand side of (2.7). Hence, the interface remains almost clean and
the surface tension is close to that of the ideal gas–liquid interface everywhere.

(b) The bulk phase is heavily contaminated or the contaminant is almost insoluble
in the liquid, so that k′

A � k′
D results. The equilibrium is shifted to the right-hand

side of (2.7) and the interface is completely loaded with contaminant molecules.
The surface tension now is close to that of the fully covered interface. Even though
this surface tension is different from that of the clean interface, it is still constant
everywhere.

Hence, both of these cases are of little interest when the Marangoni effect is the
focus. This leaves us with the third case, namely

(c) adsorption and desorption are of the same order, with k′
A ∼ k′

D .
Furthermore, if mass transport on the interface is dominated by convection,

meaning that adsorption and desorption are comparatively slow, the bubble surface
remains almost clean. This is because only marginal amounts of contaminant reach
the interface. Hence, the surface tension is that of the clean gas–liquid interface
everywhere. If, on the other hand, adsorption/desorption dominate over convection,
the interface is in perfect equilibrium with the bulk. Again, the surface concentration
is almost constant, as is surface tension. In all these cases no appreciable Marangoni
effects can be expected. This limits the field of interest to cases where convection is
of the same order as adsorption/desorption. The dimensionless terminal velocity of
a solid sphere of 1mm diameter and the density of air, rising in water, turns out
to be approximately equal to unity. Hence, we choose k′

A = k′
D = 1 for the bubble of

1mm diameter as reference. The dimensionless adsorption and desorption coefficients
of spheres of different size, can then be calculated assuming that the physics of
contamination remain unchanged, i.e. the dimensional properties kA and kD remain
constant.

3. Numerical method
In the context of immersed boundary methods, a colour function φ is necessary to

mark the spatial distribution of each phase; it is usually defined as

φ(x, t) =

⎧⎨
⎩

1 in phase 1, here the gas phase,
0 < φ < 1 on the interface,
0 in phase 2, here the liquid phase.

(3.1)
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Based on this definition, the fluid properties can be expressed by

ρ(φ) = ρ2 + φ(ρ1 − ρ2), (3.2a)

μ(φ) = μ2 + φ(μ1 − μ2). (3.2b)

The colour function is commonly handled by either the VOF method or by the level
set method. The VOF method interprets the colour function as volume fraction of
the liquid phase. The colour function is transported by the flow field. Since the liquid
volume fraction distribution has a steep jump at the interface, interface properties
such as normal or tangential vectors, or curvature, have to be reconstructed from the
phase distribution (cf. Hirt & Nichols 1981).

Level set methods, on the other hand, traditionally define a level set function as a
signed distance function. This means that the function value is always the shortest
distance to the interface, with a positive sign in one phase and a negative sign in
the other phase. Since the distance of a certain point to the interface changes in
time, the level set function needs to be reinitialized at regular time intervals. The
colour function can then be calculated from the level set function using a Heaviside
function. The advantage of this approach is that the level set function is smooth and
continuously differentiable at the interface. Normal or tangential vectors, as well as
curvature, can be calculated directly without reconstruction. The major drawback of
level set methods is their non-conservative nature, since the distance to the interface
is a non-conservative quantity; the sum of all distances is usually not constant.
Therefore, measures have to be taken to ensure mass conservation. This can be done
by coupling the level set method to other methods resulting in hybrid methods like
the coupled level set VOF method (cf. Sussman & Puckett 1998) or the particle level
set method (cf. Enright et al. 2002). These hybrid methods ensure mass conservation
by additional intermediate steps. This, of course, is computationally expensive and
also takes away most of the original simplicity of the method.

Olsson & Kreiss (2005) propose a modified version of the level set method, which
uses only a single intermediate step, and at the same time achieves mass conservation
by combining the advantages of both the VOF and the level set method. Their method
will be sketched in the following section.

3.1. Transport of the colour function

Instead of using the common distance function as level set function and calculating
the colour function therefrom, Olsson & Kreiss (2005) define the level set function as
the colour function φ in (3.1). The gas–liquid interface now is located at φ = 0.5. The
colour function, as usual, is transported by the flow field, based on

∂φ

∂t
+ u · ∇φ = 0. (3.3)

This level set function is now conservative, since V1 

∫

φ dV represents the volume
of the phase with φ = 1, which is conserved, i.e. V1 = constant. This approach is almost
identical to the VOF methods and ensures mass conservation. To avoid an interface
reconstruction, the steep gradient of the colour function is smoothed over a distance
of 2ε normal to the interface, with ε depending on the spatial mesh resolution 	x

according to

ε =
1

2
(	x)1−m. (3.4)

Here, m is a stability factor, which is set to m =0.1 in accordance with Olsson &
Kreiss (2005). Due to the smoothing, the modified level set function still is continuously
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differentiable, so that the interface normal vector, the curvature and the delta function
can still be calculated directly from the level set function, like in the original version
(cf. Sussman 1994). Hence, we have

n =
∇φ

|∇φ|

∣∣∣∣
φ=0.5

, (3.5a)

κ = −∇ · n, (3.5b)

δ(φ) = ‖∇φ‖. (3.5c)

During the temporal evolution, numerical diffusion changes the width of the smoothed
transition region at the interface. Higher mesh resolution or more sophisticated
transport schemes reduce this error only to a certain degree. To accurately track the
phase distribution, and also for the correct implementation of the surface forces, it
appears important to ensure a constant width of the interface. Hence, an intermediate
step is necessary to bring the smoothed transition region back to its desired width.
For this purpose an artificial compression equation is engaged. It is solved to steady
state during each time step and has the form

∂φ

∂τ
+ ∇ · f (φ) = ε	φ. (3.6)

The compression time variable τ is artificial and has nothing to do with time t or
t ′. The compression vector field f is chosen such that φ is convected normal to the
interface, where 0 <φ < 1 holds. Hence, f is calculated from

f (φ) = φ(1 − φ)n0.

The normal vector is only calculated once before the compression step, so that
n0 = n(τ = 0). Thereby, the interface position is kept constant during the compression
step. A compression step with pure convection would bring the transition region
to a thickness of zero, which is numerically not desirable. Convection, therefore, is
opposed by a defined amount of diffusion in (3.6), to ensure a smooth transition of φ

across the interface. The diffusion coefficient is set to ε as defined in (3.4). This results
in the desired width of the transition region of 2ε. The time step 	τ for solving (3.6)
is set according to the Courant–Friedrichs–Lewi (CFL) criterion, i.e.

	τ =
1

2
(	x)1+m. (3.7)

A spherical bubble of radius R, with its centre located at xc can be initialized by

φ(x) =

[
1 + exp

(
|x − xc| − R

ε

)]−1

, (3.8)

which is a steady-state solution of (3.6).

3.2. Transport scheme for contaminant transport

To incorporate a surface transport equation for the contaminant in the framework
of the immersed boundary method, the two-dimensional equation (2.5) has to be
transformed into a full three-dimensional transport equation, where all transport
processes are limited to the interface only. This is done in the style of the continuum
surface force model of Brackbill et al. (1992). By multiplying (2.5) with the delta
function δ(φ) and replacing δ(φ)c′ = c∗, we obtain the continuum surface transport
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Figure 3. Effect of the length of the computational domain.

equation

∂c∗

∂t
+ u · ∇c∗ =

1

Pe
∇2c∗ + k′

A(δ(φ) − c∗) − k′
Dc∗. (3.9)

The resulting continuum contaminant concentration c∗ is zero everywhere but on the
interface, where it has a peak of width 2ε, in perfect agreement with the smoothing
width of the colour function. The normal integral of the peak represents the local
concentration. If the interface concentration reaches the maximum packaging, the
shape of the peak becomes identical to the delta function: c′ =1 ⇒ c∗ = δ(φ).
Generally, the peak of c∗ would disperse quickly during the computations due to
numerical errors. To overcome this, an artificial compression step similar to the level
set compression is applied to the contaminant concentration field. Here, it is necessary
to compress the surface concentration field from both sides. At the same time, the
smoothness is ensured by opposing the convective transport by a defined amount
of diffusion. However, the diffusion in this case must be anisotropic and act only
in normal direction. This ensures that the angular contaminant distribution is not
altered during this compression step. The resulting compression transport equation is

∂c∗

∂τ
+ h · ∇c∗ = ε(n0 ⊗ n0)∇2c∗, (3.10)

with the compression vector field

h = (2φ − 1)n0.

3.3. Computational settings

The modified level set method and the continuum surface transport model are
implemented into the open source computational fluid dynamics (CFD) code
OpenFOAM. To minimize the size of the computational domain, the coordinate
system is fixed to the bubble’s centre of gravity. The upstream velocity boundary
condition and the acceleration of the local reference frame are adjusted such that the
bubble is kept in the centre of the computational domain. All calculations in this work
are two-dimensional and axissymmetric. Careful testing during initial studies shows
that a computational domain size of 6 × 2.5 bubble diameters appears sufficient to
properly represent the flow around the free rising bubble. In figures 3 and 4 the effect
of a variation of both length and width of the computational domain is shown. The
obtained terminal rising velocity is plotted in dimensionless form u/u∞ as function of



152 P. Lakshmanan and P. Ehrhard

Water Air

Density ρ (kg m−3) 1000 1.0 × 10−3

Viscosity μ (Pas) 1.3 1.6 × 10−5

Surface tension σ0 (Nm−1) 0.073

Table 1. Material properties.
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Figure 4. Effect of the width of the computational domain.

both length and width of the computational domain. We find that the above choice
of 6 × 2.5 represents a reasonable compromise, with an error of the terminal rising
velocity of less than 0.7 %. The computational mesh consists of square grid cells of
uniform size. The optimum grid resolution was found to be 	x =0.02, with mesh
refinement resulting in no significant changes of the results. The material properties
for the chosen air–water system are given in table 1.

4. Results
In the following section, firstly, a validation of the continuum surface transport

model is presented. Secondly, the rising of air bubbles in water is computed for
different surface elasticities. The resulting rising velocities are compared to existing
correlations in literature. The terminal contaminant mass on the interface is examined.
Next, the adsorption and desorption coefficients are varied, while keeping their ratio
constant. Thirdly, the terminal contaminant distribution on the interface is examined.
Some theoretical considerations are presented for the creeping flow limit and for
moderate Reynolds numbers. The simulation results are carefully tested against these
considerations.

4.1. Validation of continuum surface transport model

Reference information on contaminant concentration on bubble surfaces is scarce.
This limits the validation of the present model to cases where an analytical solution
can be inferred. As a first test, a bubble resting in a liquid of equal density, i.e. ρg = ρl ,
is computed. Initially, the bubble surface is perfectly clean. Without buoyancy, the
bubble does not move, so that transport due to adsorption/desorption is not disturbed
by convective transport. The temporal evolution of the concentration can, therefore,
be compared to an analytical solution of (2.5), obtained for vanishing velocity and
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vanishing surface diffusion, namely

c′ =
k′

A

k′
A + k′

D

(
1 − exp

[
−(k′

A + k′
D)t ′]) . (4.1)

This analytical solution has the dependence c′ = c′(t), meaning that a homogeneous
contaminant distribution on the surface is obtained, developing exponentially towards
a steady-state solution for t → ∞. The numerical simulation results in the form of
the surface-averaged contaminant concentration c̄′ are compared in figure 5 to the
analytical solution. The match between simulation result and the analytical solution is
almost perfect. Furthermore, it can be recognized that the total contaminant mass is
perfectly conserved and, likewise in the simulation, the contaminant is homogeneously
distributed on the surface.

4.2. Surface elasticity

As discussed in § 2, the properties of the contaminant are chosen as k′
A = k′

D =1
for the bubble of 1 mm diameter. This leaves the surface elasticity E in (2.6) as
the only parameter. Simulations are carried out for surface elasticities in the range
0 � E � 0.04, and for bubble diameters in the range 0.6 mm � d0 � 2.5 mm.
The resulting terminal velocities for the clean bubble (E = 0) and for different surface
elasticities are presented in figure 6. The diagram is supplemented by three correlations
from literature: (i) for ideal (clean) spherical bubbles (cf. Mei, Klausner & Lawrence
1994, dash-dotted line), (ii) for ideal (clean) ellipsoidal bubbles (cf. Tomiyama et al.
1998, continuous line) and (iii) for spherical solid particles (cf. Schiller & Naumann
1933, dashed line). It can be recognized that the terminal rising velocity for a clean
bubble (�) closely follows the prediction for the ideal spherical bubble up to a bubble
diameter of 1 mm. For larger diameter, deformation affects the drag and the bubble
rises slower than predicted. Eventually, for increasing d0, the data may approach
the predicted velocity of the ideal ellipsoidal bubble. If a contaminant is present,
and the surface elasticity is small, E = 0.005, the rising behaviour of small bubbles
d0 < 1 mm appears completely different. These bubbles have a terminal rising velocity,
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Figure 6. Terminal bubble velocity for varied surface elasticity.

which is identical to that of spherical solid particles. However, for increasing bubble
size, these bubbles rise faster than the respective solid particles, until for d0 > 1.5 mm
their rising velocity increases further and approaches that of the clean bubble. Hence,
with increasing diameter, around d0 
 1 mm we see a transition from a rising similar to
spherical solid particles to a rising similar to clean bubbles. If the surface elasticity E is
increased, this transition is shifted to larger bubble diameters, namely to d0 
 1.5 mm
for E = 0.01, and to d0 
 1.8 mm for E = 0.02. For a surface elasticity of E =0.04,
even a bubble of 2.5 mm diameter rises as slow as a solid particle of comparable size.

Figure 7 depicts the dependency of the bubble terminal velocity on the surface
elasticity, for the example of a bubble of 1 mm diameter. It is obvious that the bubble
is immediately affected as soon as a small amount of the contaminant is present. The
transition range, over which the bubble assumes the (lower) rising velocity of a solid
particle, is narrow, stretching to 	E 
 0.0075 only. Furthermore, bubbles of different
diameters all show analogous behaviour.

With these observations in mind, we now focus on the amount of contaminant,
present on the interface. Figure 8 shows the mean terminal interface concentration
c̄′ as function of the bubble diameter for different surface elasticities. The mean
concentration for the ‘clean’ bubble is obtained for E = 0, meaning that the
contaminant transport is included in the simulation but the contaminant does not
have an influence on surface tension. From this simulation it is possible to compute
the total contaminant mass on the interface for the ‘clean’ bubble for comparison.
The ‘clean’ bubble with E = 0, at all diameters, has the least amount of contaminant
on the surface and, hence, the mean concentration is lowest. For all other cases with
E �= 0, the mean concentration is close to that of the ‘clean’ bubble if that bubble rises
similarly fast as a clean bubble. In contrast, if at E �= 0 the bubble rises similarly slow
as a solid particle, we find a mean concentration of c̄′ 
 0.5. An integrated balance of
the contaminant mass on the interface in steady-state yields

c̄′
theo =

k′
A

k′
A + k′

D

=
1

2
.
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Figure 7. Terminal rising velocity of a 1 mm bubble for varied surface elasticity.
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Figure 8. Mean terminal contaminant concentration on the interface.

From this information two things can be concluded: Firstly, any bubble that rises
like a solid particle has a fully covered interface, i.e. the whole bubble surface is
available for adsorption/desorption. Secondly, any bubble that does not rise like a
solid particle also does not reach the equilibrium mean concentration of c̄′ 
 0.5.
Hence, the interface is at least partially not available for adsorption/desorption. This
in turn means that in some parts convection dominates, i.e. the interface is mobile.

Figures 9 and 10 show the evolution of the mean concentration and the rising
velocity in time for a bubble of 1 mm diameter and three different values for the
adsorption coefficient k′

A = [0.3; 0.5; 1.0], while k′
A = k′

D is maintained.
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Figure 9. Temporal evolution of the mean concentration on a bubble of 1 mm diameter.
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Figure 10. Temporal evolution of the rising velocity of a bubble of 1 mm diameter.

It is the temporal behaviour which is influenced by the adsorption/desorption
coefficients: the smaller the coefficients, the slower the adsorption/desorption
processes. Even though, for smaller coefficients, the steady state is reached at later
times, the terminal mean concentration remains identical. As a consequence of this
mean concentration history, the bubble initially may not be sufficiently retarded,
accelerating to velocities higher than the terminal velocity. Only after a certain time
does it slow down to the terminal velocity. This effect is stronger the smaller the
coefficients. The bubble’s terminal velocity, though, remains unaffected.

The observations in the above section show that very low surface elasticities are
sufficient to fully retard bubbles for the given set of adsorption/desorption coefficients.
For surface elasticities of a more realistic magnitude of E ∼ 10−1, the required interface
concentration would be even lower. In these realistic cases, the adsorption may be
slower, the desorption faster or the bulk concentration smaller. Particularly the small
bulk concentration shows that even very small amounts of contaminants will suffice
to fully retard a bubble.

4.3. Distribution of contaminant on interface

If small bubbles show the rising behaviour of solid particles, we can assume that
the flow along the gas–liquid interface is retarded by Marangoni stresses until the
velocity on the interface approaches zero. This implies that the Marangoni stresses
should match the shear stresses, otherwise caused by the solid surface. The shear
stress distribution on the surface of a spherical solid particle can be obtained either
from the analytical solution for the creeping flow limit (cf. Batchelor 1967) or from
numerical simulations for larger Reynolds numbers. This shear stress distribution
then directly leads to the surface tension gradient profile that is necessary to achieve
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Figure 11. Shear stress distribution on the surface of a spherical solid particle in the
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Figure 12. Surface tension profile that is necessary on the surface of a spherical bubble in
the creeping flow limit.

a rise of the spherical bubble in accordance with the rise of a solid sphere, i.e. we
obtain

τr,θ = μ

[
r

∂

∂r

(uθ

r

)
+

1

r

∂ur

∂θ

]
= − 1

R

∂σ

∂θ
. (4.2)

From this equation, the surface tension profile can be determined by integration. For
the creeping flow limit this can be done analytically. With the boundary condition at
the stagnation point σSP = σ (θ =0), we obtain

σ (θ) = σSP

[
1 − 3

2

μlu∞

σSP

(1 − cos(θ))

]
. (4.3)

Determining u∞ from Stokes law, cw = 24/Re, (4.3) can be rewritten as

σ (θ) = σSP

[
1 − Bo

12
(1 − cos(θ))

]
, (4.4)

using the Bond number Bo = 	ρd2
0g/σSP . The shear stress distribution on the spherical

solid particle and the necessary surface tension profile on the spherical bubble surface
are plotted in figures 11 and 12. From the shear stress profile in figure 11, a
symmetric behaviour with the maximum shear stress at the equator (θ = π/2) is
obvious. Further, it can be concluded from figure 12 that the surface tension profile
in the creeping flow limit is an odd function with respect to the bubble equator,
which behaves monotonically in the complete interval [0; π]. The difference in surface
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Figure 13. Shear stress distribution on the surface of a spherical solid particle of 1 mm
diameter for Re = 110.
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Figure 14. Surface tension profile that is necessary on the surface of a spherical bubble of
1 mm diameter for Re = 110.

tension between the upstream and the downstream stagnation point only depends on
the Bond number. Since Bo ∝ d2

0 , the difference in surface tension increases with the
bubble diameter.

Finally, for a given contaminant and given surface elasticity E, the concentration
profile can be calculated from the surface tension profile, using (2.3). For a bubble with
Re = 1 and a typical surface elasticity of E =0.1, the maximum surface coverage is
found to be X 
 5×10−3. This maximum surface coverage is found at the downstream
stagnation point, i.e. at θ = π. From this we can conclude that small bubbles, which are
close to the creeping flow limit, are extremely sensitive to the presence of contaminants.
Even the smallest amount of contaminant changes their rising behaviour to that of a
solid particle.

For larger spherical solid particles, the creeping flow limit does not hold and
numerical simulations have to be applied to determine the shear stress distribution on
the surface. The flow around such particles at moderate Reynolds numbers Re < 150 is
still axissymmetric and is computed by a standard CFD package. Figure 13 shows the
shear stress distribution from our numerical simulation of the flow around a particle of
1 mm diameter. The Reynolds number is Re =110, the materials properties are chosen
according to table 1. Figure 14 shows the corresponding surface tension profile, which
again is calculated using (4.2). Comparing these profiles to that of the creeping–flow
limit (cf. figures 11 and 12), the maximum shear stress can now be found upstream
of the equator at θ 
 1. Further, along the meridian the shear stress decreases below
zero at θ 
 2.1, which is the location of the flow separation line. The region with
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Figure 15. Shear stress distribution on the surface of a bubble of 1 mm diameter.
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Figure 16. Surface tension profile, on the surface of a bubble of 1 mm diameter.

negative shear stress downstream of the separation line (2.1 � θ � π) is caused by
recirculation. Consequently, the necessary surface tension profile in figure 14 is also
modified. The inflection point is now upstream of the equator at θ 
 1 and surface
tension is approximately constant downstream of the separation line.

The above observations will now be compared to results from numerical simulations
with varying contaminant parameters. The bubble is now allowed to deform, though
the deformation in all cases remains small, i.e. for a bubble of 1 mm diameter
height/width �0.89. Figure 16 shows the surface tension profiles for a bubble of
1 mm diameter and different values of the surface elasticity E. The surface tension
profile from figure 14 is also included for comparison, shifted by the appropriate
integration constant σSP . Three cases can be discerned:

(a) On bubbles that are not or only partially retarded (E = 0.005), surface tension
is only weakly affected, it is σ 
 σ0 on the upstream cap and σ is almost constant
downstream of θ 
 2.3 The peak value of the shear stress at θ 
 2.3 is τ 
 3.25 N m−2

(cf. figure 15).
(b) The fully retarded bubbles (E = 0.02, E = 0.04) show a surface tension profile,

exactly as predicted by the above considerations. It can be concluded that fully
retarded bubbles exhibit a surface tension profile such that the surface shear stress
distribution is equal to that of solid particles.

(c) At first sight, the remaining case with a surface elasticity E = 0.01 appears to be
a completely retarded bubble (see figure 7). Upon scrutinization, both the shear stress
distribution and the surface tension profile strongly deviate from the predictions
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above. Comparing the shear stress distribution to the predicted distribution (cf.
figure 15) shows that the theoretically required shear stress profile is not matched.
Instead, the shear stress maximum is located further downstream than required and
on the upstream cap the shear stress is almost zero. Also, on the upstream cap, surface
tension is only weakly affected. Downstream of the equator, surface tension decreases
and eventually reaches a constant value at θ 
 2. The difference in surface tension
between the upstream and downstream stagnation point is significantly smaller than
required.
Calculating the viscous drag force of this bubble gives 80 % of the value obtained
for the solid particle. As the viscous drag in the third case makes up 51 % of the
overall drag, the drag coefficient reduces by 10 %, and the terminal velocity increases
by 5%. Careful examination of figure 6 indicates that this bubble actually is not
fully retarded. Its rising velocity is only close to that of the solid particle. Hence,
we conclude that partially contaminated interfaces generate Marangoni stresses that
are strong enough to gradually slow down the bubble, but a fully covered interface
is necessary to completely slow down the bubble to the rising velocity of a solid
sphere.

5. Conclusions
In the present work, the influence of small amounts of contaminations in the

liquid on the rising behaviour of gas bubbles is examined, with the focus on
Marangoni stresses generated by adsorption/desorption of the contaminant on the
bubble surface. The examinations are limited to convection-dominated transport
in the bulk and on the bubble’s surface. Preliminary considerations show that the
adsorption and desorption kinetics should be of the same order, and moreover
should be of comparable order as convective transport. The influence of the surface
elasticity is examined numerically. The free interface is represented by a modified
level set method. A continuum surface transport model is presented, which includes
the transport of contaminant on the gas–liquid interface into the framework of an
immersed boundary formulation.

The terminal rising velocities of air bubbles in water are computed. In the absence
of a contaminant, the terminal rising velocities show perfect agreement to correlations
in literature on ideal clean bubbles. In the presence of a contaminant, the bubble
rising velocity eventually decreases to the rising velocity of a solid particle. It is shown
that the surface of such bubbles is fully covered with contaminant. The contaminant
distribution is such that the surface tension profile generates Marangoni stresses that
match the shear stress distribution on the surface of a solid particle of identical
properties.

Further investigations will focus on the determination of the set of contamination
parameters that are necessary to slow down a given bubble to the rising velocity
of a corresponding solid particle. This set of parameters is given by the adsorption
coefficient, the desorption coefficient, and the surface elasticity. This will make it
possible to classify contaminations, based on their influence on rising bubbles.

This article is dedicated to Professor S. H. Davis, on the occasion of
his 70th birthday. We would like to express our thanks to the Deutsche
Forschungsgemeinschaft (DFG) for funding this research project. Furthermore, we
gratefully acknowledge collaboration within this project with Professor F. Peters from
the Ruhr-University in Bochum.
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